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ABSTRACT: In semiconductors, the original signal from a noisy or distorted version is retrieved by the 

signal recovery process. Inthe existing studies,latch-up resistance inComplementary Metal-Oxide-

Semiconductor (CMOS) devices was not focused, resulting in high power consumption. Hence,this paper 

proposes latch-up resistance mitigation and defect identification-based signal recovery in semiconductor 

electronics using a Log Bump Fuzzy Logic System (LB-FIS) and AdaptiveQuadratic Linear Log Cosh-

based Deep Neural Network(AQL2C-DNN). Primarily, CMOS devices are gathered. After that, the 

boundaries of the p-well and n-well are detected. Then, the distance betwixt p-well and n-well is 

computed. Further, by using LB-FLS, latch-up resistance is detected. Afterward, the detected latch-up 

resistance is mitigated by inserting the guard rings. Similarly, by using AQL2C-DNN, the CMOS device 

defect is identified. If the device has a defect, then the alert is sent to field service engineers. If the device 

is normal, then layout extraction and signal path identification are done by maze routing. The best path is 

selected based on the Arnold Cat–CrayFish Optimization Algorithm (AC2FOA). UsingExponential Decay 

Active Equalization(ED-AE), the interference is removed. Thereafter, by usingaSliding Window 

Averaging Phase-Locked Loop(SWA-PLL), phase compensation is performed. Subsequently, the signal 

is amplified and recovered at the receiver side. According to the outcomes, the proposed model obtained 

a low fuzzification time (674ms), thus performing better than the prevailing techniques. 

KEYWORDS: AdaptiveQuadratic Linear Log Cosh-based Deep Neural Network (AQL2C-DNN), Latch-

up resistance, Log Bump Fuzzy Logic System (LB-FLS), Complementary Metal-Oxide-Semiconductor 

(CMOS), Arnold Cat–CrayFish Optimization Algorithm (AC2FOA), Exponential Decay Active 

Equalization (ED-AE), Sliding Window Averaging Phase-Locked Loop (SWA-PLL), and Inter Symbol 

Interference (ISI). 

1. INTRODUCTION 

Semiconductor Device (SD) fabrication has rapidly grown in recent times,which improves the power 

density in converters (Shan et al., 2024) (Wu et al., 2023). Power SD is the vital one for power electronic 

systems,which offer high-frequency operations(Nguyen & Kwak, 2020) (Zhan et al., 2023). Nevertheless, 

to enhance the system's resilience, SD is integrated with renewable energy sources (Athwer& Darwish, 

2023). The wafer acceptance test is basically a promising factor in the semiconductor manufacturing 

process (Jiang et al., 2020). CMOS transistors comprise both p-type and n-type wells, which are utilized 

forachieving low-power dissipation (Palinje& Sinha, 2022).  

In semiconductor systems, Ultra-Low-Power (ULP) image signal processors play a vital role in handling 

imaging tasks with minimal energy consumption (An et al., 2021). Further, to identify the abnormal 

operations in the SD, the Artificial Neural Network (ANN) was utilized in the existing work (Leon-Ruiz 

et al., 2024). Advanced Processing Control (APC) was employed in (Chen et al., 2024) to optimize the 

semiconductor manufacturing process. Yet, none of the prevailing methods concentrated on latch-up 
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resistance in CMOS devices. Hence, a latch-up resistance mitigation and defect identification-based signal 

recovery in semiconductor electronics using LB-FLS and AQL2C-DNN is proposed in this paper.  

1.1 PROBLEM STATEMENT 

 None of the traditional models focused on latch-up resistance in CMOS devices, thus causing 

maximum power consumption. 

 Due to the inter-symbol interference issues, the existing (Guran et al., 2023) was less effective. 

 The prevailing (Mesgari et al., 2024) had signal loss due to the unsynchronization in the phase 

response.  

 Owing to the defective CMOS device, numerous conventional models had complete circuit failure.  

1.2 OBJECTIVES 

 To identify the latch-up resistance, the proposed LB-FLS is used. Subsequently, n-well and p-well 

guard rings are installed to diminish the impacts of the latch-up resistance.  

 To eradicate the signal interferences, a novel ED-AE is employed. 

 Here, phase compensation is carried outusing the SWA-PLL.  

 The proposed AQL2C-DNN efficiently identifies the defects in the semiconductor structure. 

The paper is organized as:The related models are exhibited in Section 2; the proposed mechanism is 

derived in Section 3; the proposed work’s efficiency is validated in Section 4;the article is concluded in 

Section 5.  

2.LITERATURE SURVEY 

(Guran et al., 2023) analyzed a frequency estimation model for clock synchronization in simulators. The 

signal frequency and duty cycle of the Simulation Program for Integrated Circuits Emphasis (SPICE) were 

accurately measured by this model with minimum simulation time. However, inter-symbol interference 

was caused by the signal distortion, thus leading to errors.  

(Mesgari et al., 2024) offered a 4Gb/s multi-dot photodiode-powered CMOS optical receiver based on a 

single to differential trans-impedance amplifier equalizer. The frequency roll-off of the photodiode was 

upgraded by this framework, thus resulting in maximum front-end bandwidth. Yet, phase response 

variations in the SD led to significant data loss.  

(Mehta et al., 2020) developed an autoencoder-based semiconductor variation identification and inverse 

design. A Machine Learning (ML)-based autoencoder model was established for identifying the variations 

in the semiconductor structure byinvestigating the current-voltage curves. The overfitting issues were 

effectively mitigated by this model. Nevertheless, due to the non-linear relationship, this model had high 

complexity.  

(Park et al., 2021) established an ML-based edge detection model for image signal processor enhancement. 

To improve the quality of the CMOS sensor data, this model was generalized well enough. However, this 

framework failed to identify the defects in the CMOS device, thus leading to signal attenuation.  
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(Sun et al., 2022) employed an optical phase conjugation conversion via a non-linear bidirectional 

semiconductor optical amplifier sub-system. This framework had error-free conjugation conversion. 

Nevertheless, due to the limited gain bandwidth, this framework was inadequate to handle wide-bandwidth 

optical systems.  

3. PROPOSED FRAMEWORK 

In this section, the proposed LB-FLS is introduced for detecting the latch-up resistance. Figure 1 exhibits 

the proposed model’s architectural diagram. 

 

Figure 1:Architectural diagram of the proposed model 

3.1 CMOS DEVICE 

Firstly, for effective signal recovery, the CMOS devices are gathered.The CMOS devices  CMOS

u

arespecified as, 

 CMOS

m

CMOSCMOSCMOSCMOS

u  ,,,, 321      (1) 

Where, the number of  CMOS

u  is signified as 
CMOS

m . 

3.2 BOUNDARY DETECTION AND DISTANCE CALCULATION 
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Further, by using canny edge detection, the boundaries of the p-well  weP  and n-well  llN in  CMOS

u are 

detected. In general, canny edge detection is beneficialtocorrectly map the shapes and orientations of p-

well and n-well boundaries. 

The high-frequency noises in  weP  and  llN  are eliminated by utilizing the Gaussian Filter. 

 
   











 



2

22

2

2
exp

2

1
,

s

NP

llwe

llwe

s
NPH


    (2) 

Here, the high-frequency noise removed p-well and n-well are notated as H , and the standard deviation 

is indicated as s . Then, the non-maximum suppression is estimated regarding the intensity gradients  ig  

like intensity magnitude  im  and intensity direction and is shown as, 

 imigTh       (3) 

Where, the threshold is represented as Th . The boundaries are identified for the strong intensity 

gradients. Here, the detected boundaries are denoted as  . 

After that, based on the Euclidean distance, the distance between  weP  and  llN  is calculated as, 

    
2

, llwellwePN NPNPD     (4) 

Here, the estimated distance between p-well and n-well is represented as PND .  

3.3 LATCH-UP RESISTANCE DETECTION 

Thereafter, by employing LB-FLS, the latch-up resistance is detected based on the PND . A Fuzzy Logic 

System (FLS) is actually easier to design and implement. Nevertheless, generating a comprehensive set 

of rules in FLS is difficult and consumes more time. Thus, in FLS, the Log Bump membership function 

is employed. 

By using If-Then rules, the fuzzy rules  F  are generated as, 










upLatchNomD

upLatchmDm
F

PN

PN





7

108
    (5) 

Where, the micrometer is shown as m . Latch-up resistance is present if the distance  PND  is nearer 

to 10 m . Latch-up resistance is not present if the distance  PND  is far from 10 m . 

Then, to avoid difficulties in rule generation,the Log Bump membership function    is estimated as, 
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Here, the constant term is specified as  .In the fuzzification interference unit   ,  F  are converted 

into crisp data  Cr . 

 CrF       (7) 

Subsequently, the membership function is plotted based on the  Cr . Similarly, in the defuzzification 

interference unit  E ,  Cr  are converted into  F . 

 FCrE        (8) 

If latch-up resistance is present  rL , then it is diminished. 

Pseudocode for LB-FLS 

Input: Distance between p-well and n-well  PND  

Output: Detected latch-up resistance  rL  

Begin 

Initialize  PND  

 For  PND  

  Construct fuzzy rules 


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Compute Log Bump membership function 
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  Perform interference operations 

Implement 

 CrF   

  Estimate 

   

 FCrE 

 
 End For 

 Obtain  rL  

End 

Further, layout extraction and signal path identification are done if there is no latch-up resistance  resNL

.  

3.4 LATCH-UP RESISTANCE MITIGATION 
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Afterward, 
rL is mitigated by inserting the guard rings. Here, the guard rings reduce the latch-up resistance 

byoffering isolation for parasitic structures. n indicates the latch-up resistance mitigated CMOS device. 

3.5 DEVICE DEFECT IDENTIFICATION SYSTEM 

Further, the defect of the CMOS device is identified. Here, the device defect identification system is 

trained as shown below, 

3.5.1 DATASET 

Initially, the “Device defect identification” image dataset is gathered and is signified as l . 

3.5.2 PRE-PEOCESSING 

After that, the l  is pre-processed. Primarily, by using a median filter, the unwanted noises in l are 

removed. The noise-removed image   wv,
~
  is expressed as, 

    bagumedianwv
lba

,,
~

),( 



     (9) 

Where, the Gaussian function is specified as gu , and the pixel coordinates of the input image are 

displayed as  ba, . Then, the contrast of   wv,
~
  is enhanced.Lastly,  represents the obtained pre-

processed images. 

3.5.3 FEATURE EXTRACTION 

The features like resistance, parasitic capacitance, junction leakage, defect density, and short circuit power 

dissipation are extracted from  . The extracted features are specified as jFe . 

3.5.4 DEFECT IDENTIFICATION 

By employing AQL2C-DNN,device defect identification is done based on jFe . Hierarchical features from 

raw image data could be automatically learned by Deep Neural Networks (DNNs). Nevertheless, DNNs 

can overfit the training data, thus causing poor generalization. Hence, in DNN, the Adaptive Quadratic 

Linear unit (AQL) activation function and Log Cosh regularization are employed. In Figure 2, the 

AQL2C-DNN classifier is depicted. 
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Figure 2:AQL2C-DNN classifier 

Input layer: The input layer holds the input jFe and further passes it through the hidden layer. 

   cj IIIIFeI  321     (10) 

Where, the number of the input layer  I  is indicated as cI . 

Hidden layer: Then, the p number of hidden layers  zhl  grasps the I  and is given for further process. 

 hlhl

z BIhl        (11) 

Here, the weights and biases in the hidden layer are specified as hl  and 
hlB , respectively, and the 

AQL activation function is represented as  . 
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Where, the constant terms are notated as Z andY . By using Log Cosh regularization, the weights    

are initialized and are given as, 

    IrhLs coshlog      (13) 
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Here, the loss function is signified as Ls , the regularization hyperparameter is displayed as rh , and the 

hyperbolic cosine function is depicted as cosh . 

Output layer: The output layer  lyO  excellently detects whether the defect is present in the CMOS devices 

or not. 

 O

z

O

ly BhlO       (14) 

NorDeOut ,      (15) 

Where, the device defect identification outcomes are implied as Out , De indicates that the device has 

a defect, and Nor specifies that the device is normal. 

Pseudocode for AQL2C-DNN 

Input:Extracted Features  jFe   

Output:Device defect identification outcomes  Out  

Begin: 

Initialize  jFe and  B  

Set  1iter  

 While  maxiteriter   

  Perform  I  

  For 1 to p  hidden layers 

   Implement  hlhl

z BIhl    

   Find  
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   Initialize     IrhLs coshlog  

  End For 

  Estimate  lyO  

 End While 

 Obtain NorDeOut ,  

End 

The SD image  imSe  is taken in real-timeduring testing. Also,based on the aforementioned processes, the 

defect is identified. If De , then the alert is sent to field service engineers. If Nor , then layout extraction 

is carried out. 

 

3.6 LAYOUT EXTRACTION AND SIGNAL PATH IDENTIFICATION  
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From n , the layout is extracted if the device has latch-up resistance. From the normal CMOS device 

 ml , the layout is extracted if  resNL . K represents the extracted layouts. 

Then, from K , the signal path is identified by using Maze routing. Primarily, the source cell and 

wavefront queue are initialized. After that, by incrementing distances for reachable neighbors, the 

wavefront is expanded. Then, the shortest path is constructed. Lastly, the identified signal path is 

represented as N  . 

3.7 BEST PATH SELECTION 

For effective transmission, the optimal path is selected from N by usingAC2FOA. The likelihood of 

getting trapped in local optima is effectively reduced by the Cray Fish Optimization Algorithm (CFOA). 

Yet, ithasa premature convergence issue. Hence, Arnold cat map is employed. 

Primarily, the population of crayfish groups is initialized. The initialized population is regarded as the 

identified signal path.  

 lowupRlowV
N

qd  

,
    (16) 

Where, the initialized population of crayfish is represented as qdV , , the random number is indicated as 

R , and the lower and upper bounds are represented as low andup , respectively. Thereafter, the fitness 

function is computed by considering the minimum distance. 

When the temperature is more than 30 degrees, a cool place is chosen by the crayfish to avoid 

heat.Crayfish enter the cave during the summer vacation phase for avoiding the heat  1

,
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Here, the current iteration is notated as it , the maximum iteration is specified as 1ite , the summering 

behavior is denoted as cvV , and the Arnold cat map is represented as A . 

If the temperature is less than or equal to 30 degrees Celsius, then it is suitable for crayfish foraging.  
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Where, the foraging behavior is notated as 
3

,

new

qdV , the eating behavior of crayfish is represented as 
4

,

new

qdV

, the food picking of crayfish is specified as S , the best position is denoted as MbestV , and the crayfish 

feeding is shown as pb . h specifies the selected best path. 

3.8 INTERFERENCE REMOVAL 

Further, to avoid errors,interference in the h  are removed by utilizing ED-AE. The quality of signals 

could be significantly enhanced by Active Equalization (AE). However,due to processing time, AE 

introduces latency. Thus, Exponential decay is employed. 

The signal  )(tg  is signified as, 

  )()int()( tnsttditg h 


    (22) 

Here, the desired signal is depicted as  tdi , the interference is given as )int( t , and the noise is specified 

as )(tns . Thereafter, the signal-to-interference-plus noise ratio is maximized by the equalization filter. 

Here, to improve the latency, the Exponential decay   is applied. 

 
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ite 0       (24) 

Where, the frequency is represented as fq , the interference frequency is implied as  
0fq ,the damping 

factor is depicted as  , the decay constant is specified as i , and 0 specifies the initial quantity. Thus, 

the interference-removed signal is indicated as J . 

3.9 PHASE COMPENSATION 

Next, for J , the phase compensation is doneby using SWA-PLL. In phase alignment, Phase-Locked 

Loops (PLLs) achieve high accuracy. PLL may fail to lock if the frequency of the input signal deviates 

too much. Hence, in PLL, sliding window averaging is utilized. 

Initially, the phase detector output   phaX is assessed. Here, to improve the phase compensation, the 

sliding window averaging  w  is added. 

    wGX in

J

pha         (25) 




 J
W

w
1

      (26) 

Here, the gain of the phase detector is exemplified as inG , the phase difference is depicted as   , and 

the window size is notated as W . Further, the control signal is smoothened by the loop filter. Then, the 

closed-loop transfer function   xT 
 of the PLL is given as, 
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


     (27) 

Where, the gain of the Voltage Controlled Oscillator (VCO) is displayed as VCOG ,the loop filter transfer 

function is signified as  x~ , and the variable is denoted as x . The phase compensated signal is specified 

as pc . 

3.10 SIGNAL AMPLIFICATION 

Further, pc  is amplified. At last, the amplified signal  Am  is recovered at the receiver side. Therefore, 

an efficientsignal recovery is carried out in semiconductor electronics. 

4. RESULTS AND DISCUSSION 

Here, the proposed work’sprominence is demonstrated through the performance analysis. The 

experimentation is carried out on the MATLAB platform.  

4.1 DATASET DESCRIPTION 

By using the semiconductor wafer map defect identification dataset, the proposed work is implemented. 

Here, from the whole data, 80% of the data is allocated for training andthe remaining 20% of the data is 

allocated for testing.  

4.2 PERFORMANCE ASSESSMENNT  

To showcase the model’s trustworthiness, a performance analysis is done.  

 

 

Figure 3: Performance validation of the proposed LB-FLS 
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The performance of the proposed LB-FLS and conventional techniques like FLS, sigmoid-fuzzy, 

trapezoidal-fuzzy, and triangular-fuzzy is analyzed in Figure 3. The proposed LB-FLS had a Fuzzification 

Time (FT) of 674ms, Defuzzification Time (DT) of 599ms, and Rule Generation Time (RGT) of 608ms. 

Nevertheless, the prevailing triangular-fuzzy had FT, DT, and RGT of 1066ms, 1121ms, and 1098ms, 

respectively. Hence, due to the presence of Log Bump (LB) membership,the proposed method had low 

time complexity in latch-up resistance detection.  

 

(a) 

 

(b) 
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(c) 

Figure 4 (a) (b) and (c): Performance validation for defect identification 

In Figure 4, the performance of the proposed AQL2C-DNN is assessed by comparing it with existing 

classifiers like DNN, Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Data 

Belief Network (DBN). The proposed AQL2C-DNN obtained accuracy, precision, recall, f-measure, 

sensitivity, specificity, False Positive Rate (FPR), and False Negative Rate (FNR) of 98.96%, 98.66%, 

98.74%, 98.74%, 98.74%, 98.66%, 0.035 and 0.054, respectively. Yet, owing to poor generalization, the 

traditional classifiers had limited performance. Hence, the proposed method had impressive outcomes 

owing to the use of AQuLU activation. 

 

Table 1: Training time 

Method Training Time (ms) 

Proposed AQL2C-DNN 5841 

DNN 6317 

CNN 7884 

RNN 8754 

DBN 9869 

Table 1 compares the training time of the proposed AQL2C-DNN and existing algorithms. The proposed 

AQL2C-DNN had a training time of 5841ms, whereas the existing methods had amean training time of 

8206ms. Thus, the proposed method had higher superiority.  
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Figure 5: Performance assessment for interference removal 

Figure 5 presents the error rate analysis of the proposed ED-AE and existing algorithms like AE, Linear 

Equalization (LE), Passive Equalization (PE), and Frequency Domain Equalization (FDE). The proposed 

ED-AE obtained a Root Mean Squared Error (RMSE) of 0.2191, Mean Squared Error (MSE) of 0.048, 

and Bit Error Rate (BER) of 0.0564. Yet, the existing AE attained an RMSE of 0.2983, MSE of 0.089, 

and BER of 0.0874. Lastly, when compared to the prevailing studies, the proposed framework had fewer 

errors.  

Table 2: Path selection time analysis 

Method Path Selection Time(ms) 

Proposed AC2FOA 5614 

CFOA 6251 

COA 7567 

JOA 8548 

STO 9969 

In Table 2, the path selection time assessment of the proposed AC2FOA and conventional algorithms,such 

as CFOA, Coati Optimization Algorithm (COA), Jellyfish Optimization Algorithm (JOA), and Siberian 

Tiger Optimization (STO) is exhibited. To select the optimal path, the proposed AC2FOA took 5614ms, 

whereas the traditional STO had 9969ms path selection time. Thus, the proposed 

methodology’sdominance was proven.  

4.3 COMPARATIVE ANALYSIS 

Likewise, to reveal the consistency of the proposed work, comparative validation is done. 
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Table 3: Comparative assessment 

Author’s name Method Accuracy (%) Precision (%) 

Proposed work AQL2C-DNN 98.96 98.66 

(Zheng et al., 2021) Deep-CNN 93.75 93.81  

(Patel et al., 2024) Federatedlearning and 

explainable artificial 

intelligence 

98.78 - 

(Saqlain et al., 2020) Deep-CNN 96.2 96.24 

(Haddad et al., 2020) DNN 97.88 - 

(Chang et al., 2022) CNN 96.97 - 

Table 3 depicts the comparative analysis of the proposed work and related models. The proposed AQL2C-

DNN obtained an accuracy of 98.96% and a precision of 98.66%. However, the existing Deep-CNN 

(Zheng et al., 2021) achieved accuracy and precision of 93.75% and 93.81%, respectively. Owing to the 

overfitting issues, the existing works were ineffective. Hence, in defect identification, the proposed work 

had higher supremacy.  

5. CONCLUSION 

In this paper, a latch-up resistance-aware defect detection-based signal recovery in semiconductor 

electronics using LB-FLS and AQL2C-DNN was proposed.The latch-up resistance was effectively 

estimated by the proposed LB-FLS, thus mitigating the power loss. Here, to increase the resilience of the 

model, latch-up mitigation and phase compensation were done. Similarly, to identify the defect in the 

semiconductor electronics, the proposed AQL2C-DNN was employed, which improved the model’s 

stability and communication. Hence, as per the evaluation outcomes, the proposed framework had an 

accuracy of 98.967%, RGT of 608ms, and RMSE of 0.2191, exhibiting high efficiency and low 

complexity.  

Future scope: This work will focus on designing secure chips in the future to resist software attacks, 

enhancing the performance of the semiconductor technology.  
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